3.5.94 \(\int \sqrt {a+b \sin ^2(e+f x)} \tan ^4(e+f x) \, dx\) [494]

Optimal. Leaf size=234 \[ \frac {(7 a+8 b) \sqrt {\cos ^2(e+f x)} E\left (\sin ^{-1}(\sin (e+f x))|-\frac {b}{a}\right ) \sec (e+f x) \sqrt {a+b \sin ^2(e+f x)}}{3 (a+b) f \sqrt {1+\frac {b \sin ^2(e+f x)}{a}}}-\frac {4 a \sqrt {\cos ^2(e+f x)} F\left (\sin ^{-1}(\sin (e+f x))|-\frac {b}{a}\right ) \sec (e+f x) \sqrt {1+\frac {b \sin ^2(e+f x)}{a}}}{3 f \sqrt {a+b \sin ^2(e+f x)}}-\frac {(3 a+4 b) \sqrt {a+b \sin ^2(e+f x)} \tan (e+f x)}{3 (a+b) f}+\frac {\sqrt {a+b \sin ^2(e+f x)} \tan ^3(e+f x)}{3 f} \]

[Out]

1/3*(7*a+8*b)*EllipticE(sin(f*x+e),(-b/a)^(1/2))*sec(f*x+e)*(cos(f*x+e)^2)^(1/2)*(a+b*sin(f*x+e)^2)^(1/2)/(a+b
)/f/(1+b*sin(f*x+e)^2/a)^(1/2)-4/3*a*EllipticF(sin(f*x+e),(-b/a)^(1/2))*sec(f*x+e)*(cos(f*x+e)^2)^(1/2)*(1+b*s
in(f*x+e)^2/a)^(1/2)/f/(a+b*sin(f*x+e)^2)^(1/2)-1/3*(3*a+4*b)*(a+b*sin(f*x+e)^2)^(1/2)*tan(f*x+e)/(a+b)/f+1/3*
(a+b*sin(f*x+e)^2)^(1/2)*tan(f*x+e)^3/f

________________________________________________________________________________________

Rubi [A]
time = 0.19, antiderivative size = 234, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 8, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.320, Rules used = {3275, 478, 592, 538, 437, 435, 432, 430} \begin {gather*} -\frac {4 a \sqrt {\cos ^2(e+f x)} \sec (e+f x) \sqrt {\frac {b \sin ^2(e+f x)}{a}+1} F\left (\text {ArcSin}(\sin (e+f x))\left |-\frac {b}{a}\right .\right )}{3 f \sqrt {a+b \sin ^2(e+f x)}}+\frac {(7 a+8 b) \sqrt {\cos ^2(e+f x)} \sec (e+f x) \sqrt {a+b \sin ^2(e+f x)} E\left (\text {ArcSin}(\sin (e+f x))\left |-\frac {b}{a}\right .\right )}{3 f (a+b) \sqrt {\frac {b \sin ^2(e+f x)}{a}+1}}+\frac {\tan ^3(e+f x) \sqrt {a+b \sin ^2(e+f x)}}{3 f}-\frac {(3 a+4 b) \tan (e+f x) \sqrt {a+b \sin ^2(e+f x)}}{3 f (a+b)} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Sqrt[a + b*Sin[e + f*x]^2]*Tan[e + f*x]^4,x]

[Out]

((7*a + 8*b)*Sqrt[Cos[e + f*x]^2]*EllipticE[ArcSin[Sin[e + f*x]], -(b/a)]*Sec[e + f*x]*Sqrt[a + b*Sin[e + f*x]
^2])/(3*(a + b)*f*Sqrt[1 + (b*Sin[e + f*x]^2)/a]) - (4*a*Sqrt[Cos[e + f*x]^2]*EllipticF[ArcSin[Sin[e + f*x]],
-(b/a)]*Sec[e + f*x]*Sqrt[1 + (b*Sin[e + f*x]^2)/a])/(3*f*Sqrt[a + b*Sin[e + f*x]^2]) - ((3*a + 4*b)*Sqrt[a +
b*Sin[e + f*x]^2]*Tan[e + f*x])/(3*(a + b)*f) + (Sqrt[a + b*Sin[e + f*x]^2]*Tan[e + f*x]^3)/(3*f)

Rule 430

Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[(1/(Sqrt[a]*Sqrt[c]*Rt[-d/c, 2]
))*EllipticF[ArcSin[Rt[-d/c, 2]*x], b*(c/(a*d))], x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && Gt
Q[a, 0] &&  !(NegQ[b/a] && SimplerSqrtQ[-b/a, -d/c])

Rule 432

Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Dist[Sqrt[1 + (d/c)*x^2]/Sqrt[c + d*
x^2], Int[1/(Sqrt[a + b*x^2]*Sqrt[1 + (d/c)*x^2]), x], x] /; FreeQ[{a, b, c, d}, x] &&  !GtQ[c, 0]

Rule 435

Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Simp[(Sqrt[a]/(Sqrt[c]*Rt[-d/c, 2]))*Ell
ipticE[ArcSin[Rt[-d/c, 2]*x], b*(c/(a*d))], x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && GtQ[a, 0
]

Rule 437

Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Dist[Sqrt[a + b*x^2]/Sqrt[1 + (b/a)*x^2]
, Int[Sqrt[1 + (b/a)*x^2]/Sqrt[c + d*x^2], x], x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] &&  !GtQ
[a, 0]

Rule 478

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[e^(n - 1
)*(e*x)^(m - n + 1)*(a + b*x^n)^(p + 1)*((c + d*x^n)^q/(b*n*(p + 1))), x] - Dist[e^n/(b*n*(p + 1)), Int[(e*x)^
(m - n)*(a + b*x^n)^(p + 1)*(c + d*x^n)^(q - 1)*Simp[c*(m - n + 1) + d*(m + n*(q - 1) + 1)*x^n, x], x], x] /;
FreeQ[{a, b, c, d, e}, x] && NeQ[b*c - a*d, 0] && IGtQ[n, 0] && LtQ[p, -1] && GtQ[q, 0] && GtQ[m - n + 1, 0] &
& IntBinomialQ[a, b, c, d, e, m, n, p, q, x]

Rule 538

Int[((e_) + (f_.)*(x_)^(n_))/(Sqrt[(a_) + (b_.)*(x_)^(n_)]*Sqrt[(c_) + (d_.)*(x_)^(n_)]), x_Symbol] :> Dist[f/
b, Int[Sqrt[a + b*x^n]/Sqrt[c + d*x^n], x], x] + Dist[(b*e - a*f)/b, Int[1/(Sqrt[a + b*x^n]*Sqrt[c + d*x^n]),
x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] &&  !(EqQ[n, 2] && ((PosQ[b/a] && PosQ[d/c]) || (NegQ[b/a] && (PosQ[
d/c] || (GtQ[a, 0] && ( !GtQ[c, 0] || SimplerSqrtQ[-b/a, -d/c]))))))

Rule 592

Int[((g_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_)*((e_) + (f_.)*(x_)^(n_)), x
_Symbol] :> Simp[g^(n - 1)*(b*e - a*f)*(g*x)^(m - n + 1)*(a + b*x^n)^(p + 1)*((c + d*x^n)^(q + 1)/(b*n*(b*c -
a*d)*(p + 1))), x] - Dist[g^n/(b*n*(b*c - a*d)*(p + 1)), Int[(g*x)^(m - n)*(a + b*x^n)^(p + 1)*(c + d*x^n)^q*S
imp[c*(b*e - a*f)*(m - n + 1) + (d*(b*e - a*f)*(m + n*q + 1) - b*n*(c*f - d*e)*(p + 1))*x^n, x], x], x] /; Fre
eQ[{a, b, c, d, e, f, g, q}, x] && IGtQ[n, 0] && LtQ[p, -1] && GtQ[m - n + 1, 0]

Rule 3275

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^2)^(p_.)*tan[(e_.) + (f_.)*(x_)]^(m_), x_Symbol] :> With[{ff = FreeF
actors[Sin[e + f*x], x]}, Dist[ff^(m + 1)*(Sqrt[Cos[e + f*x]^2]/(f*Cos[e + f*x])), Subst[Int[x^m*((a + b*ff^2*
x^2)^p/(1 - ff^2*x^2)^((m + 1)/2)), x], x, Sin[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f, p}, x] && IntegerQ[m/2]
 &&  !IntegerQ[p]

Rubi steps

\begin {align*} \int \sqrt {a+b \sin ^2(e+f x)} \tan ^4(e+f x) \, dx &=\frac {\left (\sqrt {\cos ^2(e+f x)} \sec (e+f x)\right ) \text {Subst}\left (\int \frac {x^4 \sqrt {a+b x^2}}{\left (1-x^2\right )^{5/2}} \, dx,x,\sin (e+f x)\right )}{f}\\ &=\frac {\sqrt {a+b \sin ^2(e+f x)} \tan ^3(e+f x)}{3 f}-\frac {\left (\sqrt {\cos ^2(e+f x)} \sec (e+f x)\right ) \text {Subst}\left (\int \frac {x^2 \left (3 a+4 b x^2\right )}{\left (1-x^2\right )^{3/2} \sqrt {a+b x^2}} \, dx,x,\sin (e+f x)\right )}{3 f}\\ &=-\frac {(3 a+4 b) \sqrt {a+b \sin ^2(e+f x)} \tan (e+f x)}{3 (a+b) f}+\frac {\sqrt {a+b \sin ^2(e+f x)} \tan ^3(e+f x)}{3 f}-\frac {\left (\sqrt {\cos ^2(e+f x)} \sec (e+f x)\right ) \text {Subst}\left (\int \frac {-a (3 a+4 b)-b (7 a+8 b) x^2}{\sqrt {1-x^2} \sqrt {a+b x^2}} \, dx,x,\sin (e+f x)\right )}{3 (a+b) f}\\ &=-\frac {(3 a+4 b) \sqrt {a+b \sin ^2(e+f x)} \tan (e+f x)}{3 (a+b) f}+\frac {\sqrt {a+b \sin ^2(e+f x)} \tan ^3(e+f x)}{3 f}-\frac {\left (4 a \sqrt {\cos ^2(e+f x)} \sec (e+f x)\right ) \text {Subst}\left (\int \frac {1}{\sqrt {1-x^2} \sqrt {a+b x^2}} \, dx,x,\sin (e+f x)\right )}{3 f}-\frac {\left ((-7 a-8 b) \sqrt {\cos ^2(e+f x)} \sec (e+f x)\right ) \text {Subst}\left (\int \frac {\sqrt {a+b x^2}}{\sqrt {1-x^2}} \, dx,x,\sin (e+f x)\right )}{3 (a+b) f}\\ &=-\frac {(3 a+4 b) \sqrt {a+b \sin ^2(e+f x)} \tan (e+f x)}{3 (a+b) f}+\frac {\sqrt {a+b \sin ^2(e+f x)} \tan ^3(e+f x)}{3 f}-\frac {\left ((-7 a-8 b) \sqrt {\cos ^2(e+f x)} \sec (e+f x) \sqrt {a+b \sin ^2(e+f x)}\right ) \text {Subst}\left (\int \frac {\sqrt {1+\frac {b x^2}{a}}}{\sqrt {1-x^2}} \, dx,x,\sin (e+f x)\right )}{3 (a+b) f \sqrt {1+\frac {b \sin ^2(e+f x)}{a}}}-\frac {\left (4 a \sqrt {\cos ^2(e+f x)} \sec (e+f x) \sqrt {1+\frac {b \sin ^2(e+f x)}{a}}\right ) \text {Subst}\left (\int \frac {1}{\sqrt {1-x^2} \sqrt {1+\frac {b x^2}{a}}} \, dx,x,\sin (e+f x)\right )}{3 f \sqrt {a+b \sin ^2(e+f x)}}\\ &=\frac {(7 a+8 b) \sqrt {\cos ^2(e+f x)} E\left (\sin ^{-1}(\sin (e+f x))|-\frac {b}{a}\right ) \sec (e+f x) \sqrt {a+b \sin ^2(e+f x)}}{3 (a+b) f \sqrt {1+\frac {b \sin ^2(e+f x)}{a}}}-\frac {4 a \sqrt {\cos ^2(e+f x)} F\left (\sin ^{-1}(\sin (e+f x))|-\frac {b}{a}\right ) \sec (e+f x) \sqrt {1+\frac {b \sin ^2(e+f x)}{a}}}{3 f \sqrt {a+b \sin ^2(e+f x)}}-\frac {(3 a+4 b) \sqrt {a+b \sin ^2(e+f x)} \tan (e+f x)}{3 (a+b) f}+\frac {\sqrt {a+b \sin ^2(e+f x)} \tan ^3(e+f x)}{3 f}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 1.40, size = 198, normalized size = 0.85 \begin {gather*} \frac {2 a (7 a+8 b) \sqrt {\frac {2 a+b-b \cos (2 (e+f x))}{a}} E\left (e+f x\left |-\frac {b}{a}\right .\right )-8 a (a+b) \sqrt {\frac {2 a+b-b \cos (2 (e+f x))}{a}} F\left (e+f x\left |-\frac {b}{a}\right .\right )-\frac {\left (8 a^2+12 a b+b^2+4 \left (4 a^2+6 a b+b^2\right ) \cos (2 (e+f x))-b (4 a+5 b) \cos (4 (e+f x))\right ) \sec ^2(e+f x) \tan (e+f x)}{2 \sqrt {2}}}{6 (a+b) f \sqrt {2 a+b-b \cos (2 (e+f x))}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[a + b*Sin[e + f*x]^2]*Tan[e + f*x]^4,x]

[Out]

(2*a*(7*a + 8*b)*Sqrt[(2*a + b - b*Cos[2*(e + f*x)])/a]*EllipticE[e + f*x, -(b/a)] - 8*a*(a + b)*Sqrt[(2*a + b
 - b*Cos[2*(e + f*x)])/a]*EllipticF[e + f*x, -(b/a)] - ((8*a^2 + 12*a*b + b^2 + 4*(4*a^2 + 6*a*b + b^2)*Cos[2*
(e + f*x)] - b*(4*a + 5*b)*Cos[4*(e + f*x)])*Sec[e + f*x]^2*Tan[e + f*x])/(2*Sqrt[2]))/(6*(a + b)*f*Sqrt[2*a +
 b - b*Cos[2*(e + f*x)]])

________________________________________________________________________________________

Maple [A]
time = 17.99, size = 380, normalized size = 1.62

method result size
default \(-\frac {\sqrt {-b \left (\cos ^{4}\left (f x +e \right )\right )+\left (a +b \right ) \left (\cos ^{2}\left (f x +e \right )\right )}\, b \left (4 a +5 b \right ) \sin \left (f x +e \right ) \left (\cos ^{4}\left (f x +e \right )\right )-2 \sqrt {-b \left (\cos ^{4}\left (f x +e \right )\right )+\left (a +b \right ) \left (\cos ^{2}\left (f x +e \right )\right )}\, \left (2 a^{2}+5 a b +3 b^{2}\right ) \left (\cos ^{2}\left (f x +e \right )\right ) \sin \left (f x +e \right )+\sqrt {-b \left (\cos ^{4}\left (f x +e \right )\right )+\left (a +b \right ) \left (\cos ^{2}\left (f x +e \right )\right )}\, \left (a^{2}+2 a b +b^{2}\right ) \sin \left (f x +e \right )-\sqrt {-b \left (\cos ^{4}\left (f x +e \right )\right )+\left (a +b \right ) \left (\cos ^{2}\left (f x +e \right )\right )}\, \sqrt {\frac {\cos \left (2 f x +2 e \right )}{2}+\frac {1}{2}}\, \sqrt {-\frac {b \left (\cos ^{2}\left (f x +e \right )\right )}{a}+\frac {a +b}{a}}\, a \left (4 \EllipticF \left (\sin \left (f x +e \right ), \sqrt {-\frac {b}{a}}\right ) a +4 \EllipticF \left (\sin \left (f x +e \right ), \sqrt {-\frac {b}{a}}\right ) b -7 \EllipticE \left (\sin \left (f x +e \right ), \sqrt {-\frac {b}{a}}\right ) a -8 \EllipticE \left (\sin \left (f x +e \right ), \sqrt {-\frac {b}{a}}\right ) b \right ) \left (\cos ^{2}\left (f x +e \right )\right )}{3 \left (a +b \right ) \left (\sin \left (f x +e \right )-1\right ) \sqrt {-\left (a +b \left (\sin ^{2}\left (f x +e \right )\right )\right ) \left (\sin \left (f x +e \right )-1\right ) \left (1+\sin \left (f x +e \right )\right )}\, \left (1+\sin \left (f x +e \right )\right ) \cos \left (f x +e \right ) \sqrt {a +b \left (\sin ^{2}\left (f x +e \right )\right )}\, f}\) \(380\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*sin(f*x+e)^2)^(1/2)*tan(f*x+e)^4,x,method=_RETURNVERBOSE)

[Out]

-1/3*((-b*cos(f*x+e)^4+(a+b)*cos(f*x+e)^2)^(1/2)*b*(4*a+5*b)*sin(f*x+e)*cos(f*x+e)^4-2*(-b*cos(f*x+e)^4+(a+b)*
cos(f*x+e)^2)^(1/2)*(2*a^2+5*a*b+3*b^2)*cos(f*x+e)^2*sin(f*x+e)+(-b*cos(f*x+e)^4+(a+b)*cos(f*x+e)^2)^(1/2)*(a^
2+2*a*b+b^2)*sin(f*x+e)-(-b*cos(f*x+e)^4+(a+b)*cos(f*x+e)^2)^(1/2)*(cos(f*x+e)^2)^(1/2)*(-b/a*cos(f*x+e)^2+(a+
b)/a)^(1/2)*a*(4*EllipticF(sin(f*x+e),(-1/a*b)^(1/2))*a+4*EllipticF(sin(f*x+e),(-1/a*b)^(1/2))*b-7*EllipticE(s
in(f*x+e),(-1/a*b)^(1/2))*a-8*EllipticE(sin(f*x+e),(-1/a*b)^(1/2))*b)*cos(f*x+e)^2)/(a+b)/(sin(f*x+e)-1)/(-(a+
b*sin(f*x+e)^2)*(sin(f*x+e)-1)*(1+sin(f*x+e)))^(1/2)/(1+sin(f*x+e))/cos(f*x+e)/(a+b*sin(f*x+e)^2)^(1/2)/f

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sin(f*x+e)^2)^(1/2)*tan(f*x+e)^4,x, algorithm="maxima")

[Out]

integrate(sqrt(b*sin(f*x + e)^2 + a)*tan(f*x + e)^4, x)

________________________________________________________________________________________

Fricas [F]
time = 0.14, size = 27, normalized size = 0.12 \begin {gather*} {\rm integral}\left (\sqrt {-b \cos \left (f x + e\right )^{2} + a + b} \tan \left (f x + e\right )^{4}, x\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sin(f*x+e)^2)^(1/2)*tan(f*x+e)^4,x, algorithm="fricas")

[Out]

integral(sqrt(-b*cos(f*x + e)^2 + a + b)*tan(f*x + e)^4, x)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \sqrt {a + b \sin ^{2}{\left (e + f x \right )}} \tan ^{4}{\left (e + f x \right )}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sin(f*x+e)**2)**(1/2)*tan(f*x+e)**4,x)

[Out]

Integral(sqrt(a + b*sin(e + f*x)**2)*tan(e + f*x)**4, x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sin(f*x+e)^2)^(1/2)*tan(f*x+e)^4,x, algorithm="giac")

[Out]

integrate(sqrt(b*sin(f*x + e)^2 + a)*tan(f*x + e)^4, x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int {\mathrm {tan}\left (e+f\,x\right )}^4\,\sqrt {b\,{\sin \left (e+f\,x\right )}^2+a} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(tan(e + f*x)^4*(a + b*sin(e + f*x)^2)^(1/2),x)

[Out]

int(tan(e + f*x)^4*(a + b*sin(e + f*x)^2)^(1/2), x)

________________________________________________________________________________________